Brain lesion segmentation through image synthesis and outlier detection
نویسندگان
چکیده
منابع مشابه
Brain lesion segmentation through image synthesis and outlier detection
Cerebral small vessel disease (SVD) can manifest in a number of ways. Many of these result in hyperintense regions visible on T2-weighted magnetic resonance (MR) images. The automatic segmentation of these lesions has been the focus of many studies. However, previous methods tended to be limited to certain types of pathology, as a consequence of either restricting the search to the white matter...
متن کاملBrain Lesion Segmentation through Physical Model Estimation
Segmentations of brain lesions from Magnetic Resonance (MR) images is crucial for quantitative analysis of lesion populations in neuroimaging of neurological disorders. We propose a new method for segmenting lesions in brain MRI by inferring the underlying physical models for pathology. We use the reaction-diffusion model as our physical model, where the diffusion process is guided by real diff...
متن کاملA brain tumor segmentation framework based on outlier detection
This paper describes a framework for automatic brain tumor segmentation from MR images. The detection of edema is done simultaneously with tumor segmentation, as the knowledge of the extent of edema is important for diagnosis, planning, and treatment. Whereas many other tumor segmentation methods rely on the intensity enhancement produced by the gadolinium contrast agent in the T1-weighted imag...
متن کاملA brain tumor segmentation framework based on outlier detection q
This paper describes a framework for automatic brain tumor segmentation from MR images. The detection of edema is done simultaneously with tumor segmentation, as the knowledge of the extent of edema is important for diagnosis, planning, and treatment. Whereas many other tumor segmentation methods rely on the intensity enhancement produced by the gadolinium contrast agent in the T1-weighted imag...
متن کاملMultiple Sclerosis lesion segmentation using Active Contours model and adaptive outlier detection method
The segmentation of Multiple Sclerosis (MS) lesions on Magnetic Resonance Imaging (MRI) has become a crucial criterion for diagnosis and predicting prognosis in early disease. Automated MS lesion segmentation is highly desirable for its low time computation, cost, effectiveness and minimum user bias. We proposed to develop and evaluate an automated lesion segmentation method based on Active Con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: NeuroImage: Clinical
سال: 2017
ISSN: 2213-1582
DOI: 10.1016/j.nicl.2017.09.003